
TRs-eo@ MODEL I

TINY PASCAL
USER'S MANUAL

~ TRS-BD

CAT. NO.

26-2009

SOFT\NARE

CUSTOM MANUFACTURED IN THE USA FOR RADIO SHACK M A DIVISION OF TANDY CORP.

Contents

Introduction : . i

I/Overview of the System . 1

2/fhe Monitor ·. 2

3/fhe Editor . 3

4/fhe Compiler . 5

5/Starting Instructions ... , ... 10

6/Using the 32K Tiny Pascal 13

7/Error Codes 14

8/U seful Calls and Addresses 17

9/fhe Rules of BLOCKADE ... 18

NMemory Map 19

Bl Sample Programs _ 20

C/Syntax Diagrams ... 23

Index .. 27

Customer Information : 28

1/ Overview of the System
Tiny Pascal is a complete, self-contained operating system for creating, compiling,
running, saving and loading Pascal programs for the TRS-80. Once you have loaded
Tiny Pascal, you can use all the ''subsystems'':

Monitor: Provides run-time support, checks for errors, and provides the
necessary utilities to save and load programs to and from cassette tape.

Compiler: Compiles your PASCAL source program into P-code, ready to be
executed. The compiler also checks for syntax errors.

Editor: Lets you create or modify Tiny Pascal source programs.

All three sub-systems are loaded simultaneously, and are always present in RAM,

unless you choose to overwrite portions to free memory space.

The minimal system requirements are: LEVEL II, 16 KRAM. You will need at
least 32K to examine the Compiler source. (See Chapter 6.)

Overview of this Manual

Chapters 2 through 4 of this manual discuss in detail the three sub-systems, what
they do, and_how to use them. Chapter 5 deals with the specific aspects, limitations
and enhancements to Tiny Pascal. Then follows a chapter on Getting Started to help
you get through the first time you bring Tiny Pascal up. Finally, you will find the
error codes, syntax diagrams, listings of sample programs, and other useful
information.

1

2/ The Monitor
All operations make at least some use of the Monitor, so we will begin our
description of the Tiny Pascal system with it. The Monitor provides run-time
support to the entire system, as well as providing you with a means of
saving/loading your source programs and P-code (compiled) programs via cassette
tape. From the Monitor you also give the command to compile a program, or to run
that program once it has been compiled. You also invoke the Editor from the
Monitor.

Monitor Commands

E
C

C/-P

CI-S

A
R/-C

LS filename
LP filename

WSfilename
WP filename

Edit old source file or create a new one.
Compile source program into P-code, ready to be executed.
P-code is stored after source in RAM.
Compile source, but do NOT generate P-code (useful for checking
for syntax errors)
Compile source, and overwrite the source program with P-code
(used when you have very large programs). You will have to
reload or retype the source program if you want to edit it later.
Run the compiled program.
Run the compiled program and overwrite the Editor and the
Compiler. You will have to reload the Pascal system if you want to
edit or compile a program later.

Load source program from cassette.
Load P-code program from cassette.

Save source program to cassette.
Save P-code program to cassette.

Note that you may choose to overwrite sections of the Tiny Pascal system if you
need the space for a large program. However, you must remember that the
overwritten sections are gone and you must re-load the entire system if you are to
use them again.

A file name can be at most six characters long. When loading a program, either in
source or P-code format, the file name must be entered exactly as it was saved on
tape. That is, when loading the Tiny Pascal system or when reloading a program
which you have saved, you must be sure to use the correct and complete name.

If you accidently type in the wrong file name when requesting a load, the Tiny
Pascal system may never return control to the keyboard and you will have to reset
and reload the entire system again. Also, there is no way to find out the names of
files on tape, so you must remember exactly what you called the file when you
recorded it.

2

3/ The Editor
The Editor provided with your Tiny Pascal package enables you to create and
modify source programs.

The Pascal Editor is line oriented, but, unlike BASIC, does not use line numbers
since they are not used in the Pascal language. The maximum number of lines of
text that you can have is 600, and the maximum line length is 130 characters.

All Editor commands are single characters; some may have numeric arguments
following them, or a character string. In our discussion of the Editor, xx refers to
integernumbers (l-999), and string refers to a string. Each command ends with a
carriage return ((ENTER} on your TRS-80 keyboard). Invalid commands are flagged
with the message 'ILLEGAL'.

The line pointer always points to the line most recently displayed, modified or
inserted. After a Delete command, the line pointer is moved up one line. When you
first load the Tiny Pascal system, a sample program is loaded in, too. Thus, when
you type "E" to enter edit mode, a file is already there. You will see a .. >". This is
the prompt from the editor that lets you know that it is waiting for a command (not
text). The commands are listed below.

To erase a source program, use the "D*" command. After a "D*", the editor will
automatically put you into Insert mode and wait for text.

Editor Commands

Note: '*' means entirely or '' all the way'':

CENTERJ
p
Pxx
p•

u
Uxx
u·

A carriage return on an empty line will exit from Insert mode

Prints the current line
Prints xx lines starting from current line
Prints entire file

Moves up one line
Moves upxx lines
Moves up to top or first line of file

3

Editor commands. continued

N
Nxx
N*

D
Dxx
O*

Rstring

X

s

a

Moves line pointer to next line (down)
Moves line pointer down xx lines
Moves line pointer to last line of file

Deletes current line
Deletes xx lines starting at current line
Deletes entire file. This will automatically put you into Insert
mode and wait for text.

Enters Insert mode. Begins inserting lines after current line
pointer. A'?' is displayed to prompt you. Press (E:Nfffi) at the
beginning of a line to exit from Insert mode.

Replaces the current line by String

Extends line. The current line is displayed and the cursor is
positioned to the end of the line, allowing characters to be
appended. Press (ENTER) to save changes and return to
the Editor.

Displays Status: Numberoflines, file location, position of line
pointer.

Quits and returns to the Tiny Pascal Monitor

The Editor also recognizes two special keys: the back arrow 8 for backspace,
and the right arrow 8 for tab, which is three spaces. These two keys may be
used at any time for editing a command or input file. 9 over a tab moves the
cursor three spaces back on the display and erases the tab. ·

To illustrate: If you want to enter a program, you would type "E" from the
Monitor, then you would type "I" for Insert .. You then can enter text. To stop
entering text, you press (ENTER) on an empty line.

If a '' MEMORY FULL'' error occurs while editing or inserting, the source file is too
big. You may be able to pack in the program by eliminating extra spaces and tabs.

You should experiment with the editor for awhile to make sure that you completely
understand its operation.

4

4/ The Compiler
A compiler is a program that translates the statements of a high-level language into
an equivalent program of machine-readable form. Tiny Pascal translates the
high-level source program into an intermediate file called P-code. The P-code is
then interpreted, using the run-time Monitor for support. The result is a program
which executes at least four times faster. and up to eight times faster than BASIC!

Tiny Pascal is a subset of standard Pascal. The syntax is essentially identical to the
full language. Syntax diagrams have been included in Appendix C for those who
are just now learning the language.

This manual is not an instructional text on Pascal programming, but rather an
explanation of the limits and special features of Tiny Pascal. However, we will
review some essential points in the next section.

For those who need a more thorough introduction, we recommend the fol lowing:

Programming in Pas cal; Grogono. Addison-Wesley, 1978

Pascal: User Manual and Report; Jensen and Wirth. Springer-Verlag, 1974

A Primer on Pascal; Conway, Gries, and Zimmerman. Winthrop Publishers, 1976

Pascal, An Introduction to Methodical Programming; W. Findlay and D.A. Watt.
Computer Science Press, 1978

Compiler Specifics
Note: See the Index for a complete list of Pascal keywords .

1. Maximum number of procedure or function parameters is 15; maximum
number of procedure nests is seven levels; the symbol table is restricted tc 75
entries (200 for big version).

2. • •: = " is used for assignment and .. = " is used for equality. They are not
interchangeable!

3 ... ;" is used to separate statements, not to end statements. Thus the last'';'' in
a compound statement:

BEGIN statement
statement;
IF exp THEN exp ELSE exp;
statement;

END

is not necessary. (It is, however, allowed since a Pascal statement can be a null.)
Note also the absence of'';'' before an ELSE or an END in a CASE statement.

5

4. Expressions may be either arithmetic or logical (Boolean). Thus, the following
are legal:

A:= B>C;

IFA+BTHEN ...

Note: The Boolean operator OR has the same precedence as the arithmetic
operators • • + '' and •' - '' . AND has the same precedence as '' *'' and DIV, etc.
It is important to remember that OR and AND have precedence over • • = '' , • • <'',
etc . , thus the need for brackets at times a:s shown below:

IF (A< 10) AND (A> 5) THEN ...

The statement:

IFA< 10AND(A>5)THEN ...

Would be parsed (analyzed) as:

IF A< (10 AND (A> 5)) THEN ...

Thus producing an unintended result.

There are some context-sensitive rules and meanings that cannot be inferred from
the syntax diagrams, and may be particular to this implementation:

5. For the TRS-80, "("and")" are used instead of"[" and 'T' .

6. Identifier names must start with a letter and may be followed with letters or
digits, but only the first four characters are significant. However, reserved
words must be typed in full.

7. Identifiers must be declared before used. Identifiers can be declared twice,
but only the last one is used. Formal parameters of a procedure need not (and
should not) be declared again inside the procedure.

8. Parameters are passed to procedul'es or fun·c~ions by value, i.e. a copy of the
value of the parameter as defined before the call.

9. The scope rules for identifiers are the same ones used by any block-structure
language. The scope of a variable is the procedure that contains it. An inner
procedure can use a variable defined in an outer procedure.

10. The only data types Tiny Pascal supports are integers and one-dimensional
integer arrays. The integers are 16-bit signed. The arrays start at 0. Arrays are
not checked for subscript-out-of-range at runtime.

6

11. Built-in functions:

Function

ADIVB

AMODB

ASHLB

ASHRB

Meaning

Truncated Integer division: 27 DIV 5 = 5

A- (ADIVB)"B:27MOD5 = 2

Left Shift A by B : 27 SHL 2 = 54

RightShiftAbyB: 27SHR2 = 13

The built-in array MEM can be used to read to (if it appears in the left side of an
assignment) or from (if it appears in an expression) a specified memory
location, such as:

A:= MEM (24467) + 3; (* READ FROM MEMORY*)
MEM (T): = 0; (*WRITE TO MEMORY*)

A second form of the MEM function is MEMW. This enables a two-byte word to
be read to or from memory using the same convention as for MEM. Note: The
low order byte comes first, in accordance with INTEL convention.

12. Hex constants are prefixed by '' % • •, e.g. , %2A00

13. Strings are enclosed by single quotes('), not double quotes('') . When a string
appears in an expression or as a CASE label. it has the value equal to the ASCII

value of the first character of the string. When a string appears in the WRITE

statement, the entire string would be output. For example:

X:= 'ABCD'

X would equal 65 (ASCII " A").

14. The READ and WRITE statements are character-oriented, not line-oriented.
More than one character can be input or output with a single statement.
Decimal numbers or hex numbers can be read in from the keyboard by a '' #''
(decimal) or''%'' (hex) after the variable in the READ statement. Similarly, a
decimal integer can be printed on the outP.Ut device by following the
expression with the appropriate '#' or '% • for hex.

READ (A,B,C, 1#,Jo/o)

This would READ three characters, a decimal number, and a hex number.

A:= 65
WRITE ('HELLO?)S',A,)S', A#, ')f, A%)

would print:

HELLO? A 65 0041

Note:' ')f • represents a blank space. It is used only where necessary for illustration.

7

f5. Since the READ is character-oriented, it is necessary to terminate an integer
input by a non-integer character (such as CENTER) or (SPACE BAR)). To input a
hex number, four digits must be typed.

16. To write on a new line, it is necessary to output the ASCII code for carriage
return/line-feed to the output device. That is, you must manually insert a
carriage return/line feed. For the TRS-80 this can be accomplished by outputting
the carriage return alone. (The TRS-80 software does the rest.) For example:

WRITE ('THIS IS A TEST', 13)

Note: 13 is an ASCII ••carriage return''.

17. An expr.ession in the IF, WHILE, and REPEAT statements is said to fulfill the
condition if the least significant bit is one. This is equivalent to testing whether
the expression is odd. Thus after:

IFXTHENA:= 1 ELSEA:= 100

A would have the value of one ifx is odd, and 100 if xis even.

18. The relational operators ('6=":•=>", etc.) always produce a value of
zero or one. Thus after:

A:= X = 5;

A equals one if X equals five; otherwise A equals zero.

19. Comments are opened by••(*'' and closed by•'*)''.

8

20. Here is a list of built-in functions and procedures:

ABS(exp)

CALL(exp)

Returns the absolute value of exp

A user-defined machine language subroutine where exp
is an address to the routine.

Subroutines must conform to the following:

1). Save all registers upon entry.
2). Restore all registers before exiting.
3). Return from the subroutine in the following fashion:

INKEY

INCDE
INCDE
RET

INP(exp)

MOVE(b,a,n)

OUTP(a,x)

PLOT(x,y,a)

POINT(x,y)

SOR(exp)

Inputs from the keyboard, used like this: A:=
INKEY

Inputs port exp, used like this: A= INP(exp)

Move a block of memory of n bytes from address a
to address b.

Outputs x to port a.

Plots graphics to screen, using the x-y coordinates.
If a is odd then plot is "set", if a is even then plot is
"reset"

Just like BASIC: Returns one if the point is set, zero if
not set.

Returns square of exp.

21. The screen control characters are the same as TRS-80 BASIC. For example,
use WRITE (28,31) to clear the screen.

9'

5/ Starting Instructions

In this section, we will go step-by-step from loading the tape the first time, to
running your first program. Side One of your tape comes with three sample
programs: the first is loaded with the system, the second is HILBER and the third is
BLOCK. Side Two contains the big 32/48K compiler and source to Tiny Pascal,
PAS32K and COMPS 1 respectively.

Start-Up
1. Tum on your machine. When asked for MEMORY SIZE, respond by pressing

CENTER~.
2. Type "SYSTEM" (ENTER), to reach system level, You will see"*?"

3. Make sure that your Tiny Pascal tape is at the start, and type PASCAL, then
(ENTER) and put the recorder in the Play mode.

4. The tape will begin to load, and the asterisk will blink every four seconds. The
entire load will take about three minutes.

5 . Once the tape has loaded, press '' /'' CENTER). At this point you should receive
the opening message:

TINY PASCAL V-X.Y

where x is the version and Y the release number.

6. At this point you have successfully loaded the entire Tiny Pascal operating
system, and can proceed to the next section below. If you did not get this far try
loading the tape again. Try various volume settings.

10

Creating a Program

1. From the Monitor, type "E". This will place you in the Editor. You will see a set
of statistics on the current file. A sample program is loaded with Tiny Pascal. If
this is your very first try, then skip ahead to step 5, otherwise proceed.

2. To delete the sample program which is always loaded with the system, you
simply use the editor command: ''D*". Remember, 'D*' will delete all lines and
put you in the Insert mode.

3. At this point you may enter a program.-

4. Once your program is entered, you may exit the Insert mode by pressing (ENTER)
at the start of a line. This puts you back in the Editor command mode.

5. To return to the Monitor, to compile, etc., you press([) for "Quit" .

Compiling, Running, Saving/Loading a
Program

1. Normally, to compile a source program, you press CC) (ENTER) from the
Monitor. This creates P-code. If you have any syntax errors, they will show up
here. If you have syntax errors, the error list in Chapter? will tell you what they
are. You should then go back and edit the existing source file to correct the
syntax errors before re-compiling.

Note: Other options for compilation are discussed on the next page and on page 2.

2. Once you have successfully compiled the program, you may run it from the
Monitor by typing: R (ENTER) from the Monitor.

3. To save the program, or the P-code, you may use the appropriate Monitor
commands. That is, ''wsjilename'' to save the source file (program text), or
"WP filename" to save the P-code file. Or, atthis point, you could start a new
program, or load a previously stored program from tape.

4. Remember, you must re-compile a program if you make a change in it!

5. To load a previously stored program, you would use either the ''Lsjilename'' to
load the source (text) file, or the "LP filename" to load the P-code (object code)
file. If you forget and accidentally try to load an object file as a source file, or
vice versa, errors will result and you may have to reload the Tiny Pascal system.

11

Special Notes

The (BREAK) key causes a pause in program execution; press any other key to
resume. If you press CBREAK)twice in a row, you will teflninate the run, and return
to the Tiny Pascal monitor.

Once a program has been compiled, only the P-code (that is the compiled program)
need be loaded for execution. In other words, it is not necessary to compile before
each execution if you have saved the P-code on tape.

If an error "1001" occurs during compilatiQn, there is not enough memory. You
should try using "C/-S". Be sure to save the source first!

When a "MEMORY FULL" error occurs while running the program, either cut down
your array size or try using the "RI-C' option. Be sure to save the source first!

We know that you will enjoy using Tiny Pascal, and recommend that you play with
it a while just to get the hang of it and to become familiar with all its features.

12

6/ Using the 32K Tiny Pascal

On Side Two of your tape is an expanded Tiny Pascal compiler. That is, it can
handle larger programs. You will need at least 32K RAM to use it. It is exactly the
same as the 16K version, except that it will use all the memory that you have in your
machine.

To use it, simply follow the directions in Chapter 5, for starting Tiny Pascal, except
substitute "PAS32K" for ''PASCAL''. The source to the compiler is immediately after
"PAS32K" on Side Two. It is called: "COMPS I". To load this file simply type: "LS

COMPS I". You can then examine the source to the compiler. You do not need to do
this to run the 32K version; it is for your interest only. You can use it to study the
design and exact implementation of Tiny Pascal. The source to Tiny Pascal is
written in Tiny Pascal and should provide hours of enjoyment.

Note: Programs are not interchangeable between the two compilers. That is, a
program created using the 32148K compiler cannot be used with the normal
compiler, and vice-versa.

13

7 / Error Codes

1 : Error In Simple Type
2: Identifier Expected
3: "Program" Expected
4: ")" Expected
5: ":" Expected
6: Illegal Symbol
7: Error In Parameter List
8: "Of" Expected
9: "(" Expected

10: Error In Type
11 : "(" Expected
12: ")" Expected
13: End Expected
14: ";" Expected
15: Integer Expected
16: "=" Expected
17: "Begin" Expected
18: Error In Declaration Part
19: Error In Field-List
20: "," Expected
21 : "*" Expected

50: Error In Constant
51: ":="Expected
52: "Then" Expected
53: "Until" Expected
54: "Do" Expected
55: "To"/"Downto" Expected
56: "If" Expected
57: "File" Expected
58: Error In Factor
59: Error In Variable

101: Identifier Declared Twice
102: Low Bound Exceeds High Bound
103: Identifier Is Not Of Appr. Class
104: Identifier Not Declared
105: SignNotAllowed
106: Number Expected
107: Incompatible Subrange Types
108: File Not Allowed Here
109: Type Must Not Be Real
110: TagfieldTypeMustBeScalar

14

111: Incompatible With Tagfield Type
112: Index Type Must Not Be Real
113: Index Type Must Be Scalar
114: Base Type Must Not Be Real
115: Base Type Must Be Scalar
116: Error In Type Of Standard Procedure Parameter
117: Unsatisfied Forward Reference
118: Forward Reference Type Identifier In Variable Declaration
119: Forward Declared; Repetition Not Allowed
120: Function Result Type Must Be Scalar
121: File Value Parameter Not Allowed .
122: Forward Declared Function, Repetition Not Allowed
123: Missing Result Type In Function Declaration
124: F-Format For Real Only
125: Error In Type Of Standard Function Parameter
126: Number Of Parameters Does Not Agree With Declaration
127: Illegal Parameter Substitution
128: Result Type Of Parameter Function Does Not Agree With Declaration
129: Type Conflict Of Operands
130: Expression Is Not Of Set Type
131 : Tests On Equality Allowed Only
132: Strict Inclusion Not Allowed
133: File Comparision Not Allowed
134: Illegal Type Of Operand
135: Type Of Operand Must Be Boolean
136: Set Element Type Must Be Scalar
137: Set Element Types Not Compatible
138: Type Of Variable Is Not Array
139: Index Type Is Not Compatible With Declaration
140: Type Of Variable Is Not Record
141: Type Of Variable Must Be File Or Pointer
142: Illegal Parameter Substitution
143: Illegal Type Of Loop Control Variable
144: Illegal Type Of Expression
145: Type Conflict
146: Assignment Of Files Not Allowed
147: Label Type Incompatible With Selecting Expression
148: Subrange Bounds Must Be Scalar
149: Index Type Must Not Be Integer
150: Assignment To Standard Function Is Not Allowed
151 : Assignment To Formal Function Is Not Allowed
152: No Such Field In This Record
153: Type Error In Read
154: Actual Parameter Must Be A Variable
155: Control Variable Must Be Neither Formal Nor Non-Local
156: Multidefined Case Label
157: Too Many Cases In Case Statement
158: Missing Corresponding Variant Declaration

15

159: Real Or String Tagfields Not Allowed
160: Previous Declaration Was Not Forward
161: Again Forward Declared
162: Parameter Size Must Be Constant
163: Missing Variant In Declaration
164: Substitution of standard Proc/Func Not Allowed
165: Multidefined Label
166: Multideclared Label
167: Undeclared Label
168: Undefined Label
169: Error In Base Set
170: Value Parameter Expected
171 : Standard File Was Redeclared
172: Undeclared External File
173: (Not Relevant)
174: Pascal Procedure Or Function Expected
175: Missing Input File
176: Missing Output File

201: Error In Real Constant: Digit Expected
202: String Constant Must Not Exceed Source Line
203: Integer Constant Exceeds Range
204: (Not Relevant)

250: Too Many Nested Scopes Of Identifiers
251: Too Many Nested Procedures And/Or Functions
252: Too Many Forward References Or Procedure Entries
253: Procedure Too Long
254: Too Many Long Constants In This Procedure
255: Too Many Errors In This Source Line
256: Too Many External References
257: Too Many Externals
258: Too Many Local Files
259: Expression Too Complicated

300: Division By Zero
301: No Case Provided For This Value
302: Index Expression Out Of Bounds
303: Value To Be Assigned Is Out Of Bounds
304: Element Expression Out Of Range

398: Implementation Restriction
399: Variable Dimension Arrays Not Implemented

1000: '.' Missing
1001 : Out Of Memory

16

8/ Useful Calls and Addresses
HEX
ADDRESS
4180
4182
4184
4186
4188
418A
418C
418E
4190
4192
4194
4196
4198
419A
41AO
41A2
41A4

FUNCTION
Starting address of user source program
Ending address of user source program
Start of P-Code
End of P-Code
Address of editor
Address of compiler
Start address of user source program (again)
Address of runtime stack
Ending address of runtime stack
End of memory address (7FFF for 16K)
Monitor entry point
Address of program currently executing
Complement of contents of 418E
Overflow message flag-default O
Call address: console in (waits for key press)
Call address: console out
Call address: lnkey (input from keyboard, does not wait
for key press, i.e. returns at once.)

17

9/ The Rules to BLOCKADE

The sample program BLOCKADE (called BLOCK) is loaded with the Tiny Pascal
system. The rules are the same as the amusement hall versions. Each player tries to
box in the other.

The game accepts commands from two players simultaneously. Each player moves
his/her man using the keys illustrated below:

Left-Side Player

Cl)- up

left -(A) (DJ- right

00- down

Right-Side Player

CID- up

left - ([) (j)- right

G)- down

The speed is user selected between one and ten, with one being the fastest and ten
the slowest. Three to four is about right for beginners.

18

Appendix A/ Memory Maps

16KVerslon 32K/48K Version

4060 Reserved Ram For 4060 Reserved Ram For
Interpreter & Monitor Interpreter & Monitor

4100 Entry Points Table 4100 Entry Points Table

4180 System Control Block 4180 System Control Block

41A0 1/0 Routines 41A0 1/0 Routines

41E0 Interpreter; 41E0 Interpreter;
Runtime Routines Runtime Routines

473A Monitor 473A Monitor

498E User Memory For 4990 Runtime Stack For
Source & P-Code Editor or Compiler
(4.5) (3.25)

5BC0 Runtime Stack For 5690 Editor P-Code
Editor or Compiler
(1 .75) 5EA0 Compiler Table

62A0 Editor P-Code 5FC0 Compiler P-Code

6AB0 Compiler Table 73F0 User Memory For
Source & P-Code

6BO0 Compiler P-Code

7FFF Assumed end of memory

19

Appendix B / Sample Programs

(* SAMPLE TINY PASCAL PROGRAM BY H. YUE~*)
VAR X0,Y0,X,Y,K,F:INTEGER;
BEGIN

X0:=13000; Y0:=18000; F:=11;
REPEAT X:=X0; Y:=Y0; WRITE(15,28,31);

FOR K:=1 TO 1000 DO BEGIN
X:=X+Y DIV 4; Y:=Y-X DIV 5;
PLOT(X SHR 8,Y SHR 8,1) END;

X0:=X0+X0 DIV F; Y0:=Y0+Y0 DIV F;
F:=F+F DIV 6

UNTIL F>70; WRITE(28,31, ✓ THE SHOW IS OVER ✓)

END.

20

(*PLOT HILBERT CURVES OF ORDERS 1 TON*)
COt-4ST N=4; H0=32;
VAR L H, X, Y, X0, Y0, U., V : I NT EGER;
PROC MOVE;
VAR I., J : I NT EGER;

FUNC MIN(A., 8);
BEGIN IF A>B THEN MIN:=B ELSE MIN:=A END;

FUNC MAX(A, 8);

BEGIN IF A<B THEN MAX:=B ELSE MAX:=A END;
BEGIN FOR I:=MIN<X,U) TO MAX(X,U) DO

FOR J:=MIN(Y,V) TO MAX(Y,V) DO
PLOT(I, J, 1);

U:=X; V:=Y
END;

PROC P<T'1'P, I);
BEGIN IF I>0 THEN

CASE TYP OF
1: BEGIN P<4,I-1); X:=X-H; MOVE;

P(1, I-1); Y:=Y-H; MOVE;
P(1, I-1); X:=X+H; MOVE;
P<2 .. I-1) END;

2: BEGIN P(3, I-1); Y:=Y+H; MOVE;
P<2 .. I-1); X:=X+H; MOVE;
P(2, I-1); Y:=Y-H; MOVE;
P<1, I-1) END;

3: BEGIN P<2, I-1); X: =X+H; MOVE;
P<J, I-1); Y:=Y+H; MOVE;
P(3, 1-1); X:=X-H; MOVE;
P<4, 1-1) END;

4: BEGIN P(1, I-1); Y:=Y-H; MOVE;

END
END;

P(4, 1-1); X:=X-H; t10VE;
P<4,l-1); Y:=Y+H; MOVE;
P(3, I-:1) END

BEGIN (*MAIN*)
WRITE(:15,28,3:1,13,' HILBERT CURVES');
I:=0; H:=H0; X0:=H DIV 2; Y0:=X0;
REPEAT I:=I+:1; H:=H DIV 2;

X0:=X0+H DIV 2; Y0:=Y0+H DIV 2;
X:=X0+<I-1)*32; Y:=Y0+10; U:=X; V:=Y;
P(:1, I)

UNTIL I=N
END.

21

(>t<BLOCKADE. BY K. M. CHUNG. 4/26/79>t<)
VAR I,J,SPEED,ABORT,BLNK:INTEGER;

SCORE,MARK,MOVE,CURSOR:ARRAY(1) OF INTEGER;
F'ROC F'SCORE;

BEGIN WRITE<SCOREC0)#);
MEMWC%4020) :=%3FFE; (>t<SET CURSOR*)
WRITE(SCORE(1)#) END;

PROC BLINK;
VAR T,K,DELAY:INTEGER;

BEGIN T:=CURSOR<I>-MOVE(I);
FOR K:=1 TO 30 DO BEGIN

FOR DELA'r' : =1 TO 100 C>O;

END;

IF MEMW(T)=BLNK THEN MEMW<T> : =MARK(I)
ELSE MEMl.J (T) : =BU~K

ENC,

BEGIN WRITEC'SPEED<1-10)');
READ<SPEEDI); SPEED:=SPEED*10;
MARK(0):='>t<'+'>t<'SHL 8; MARK(1):='('+')'SHL 8;
BLNK: =' '+' 'SHL 8;
SCORE(0) :=0; SCORE(1) :=0;
REPEAT WRITE(15,28,31); (>t<TURN OFF CURSOR, CLEAR SCREEN*)

FOR I :=9 TO 117 DO BEGIN
PLOT (I., 1, 1) _; PLOT (I., 4~•-• 1) EN[:,_;

FOR I:=1 TO 45 DO BEGIN
F'LOT(9., J..1); PLOT(10., I., 1).;

PLOT<116, 1,1); PLOT(117, I,1) END;
CURSOR(0):=%3C00+64*4+12;
CURSOR(i):=%4000-64*4-16;
FOR J:=0 TO 1 DO MEMW(CURSOR(J)):=MARK(J);
MOVE(0):=64; MOVEC1):=-64;
I:=1; ABORT:=0; PSCORE;
REPEAT UNTIL INKEY<>0.; <*HIT KEY TO START>t<)
REPEAT I: =1-I;

FOR J :=1 TO SPEED DO
CASE INKEY OF

'W':MOVE(0):=-64; 'X':MOVE<0):=64;
'[>': MOVE(0): =2; ·'A': MOVE(0): =-2;
'0' :MOVE(1) :=-64; ' . ':MOVE(1) :=64;
'; ':MOVE(1):=2; 'K':MOVE(1):=-2

ENC>;
CURSOR(I):=CURSOR(I)+MOVECI);
IF MEt1l.J <CURSOR< I)) =BLNK THEN MEt11,J <CURSOR< I)) : =MARK< I)
ELSE BEGIN SCORE<1-I>:=SCORE<1-I)+1;

ABORT:=1; BLINK END
UNTIL ABORT

UNTIL SCOREC1-I))=10
END.

22

Appendix C/ Syntax Diagrams

EXPRESSION STATEMENTt--_. __________ _,

EXPRESSION STATEMENT

WHILE EXPRESSION STATEMENTt--------------------------'I

REPEA EXPRESSION 1------------------------

STATEMENT

EXPRESSION EXPRESSION 1--------------------

23

PROGRAM

-~
BLOCK

~ (• IDENTIFIER

•---s--J
BLOCK

FACTOR

-------• I CONSTANT----------------------------

24

l"'----1vARIABLE 1------------------------..,

1---- FUNCTION __,._

IDENTIFIER

t----• EXPRESSION 1----i

SIMPLE EXPRESSION

----49'----~....;...· -· ;-.....--• I TERM L------------..----

TERM

FACTOR•

VARIABLE

-----I 10ENTIFIER LI-----------------------::; (r---•

L~
CONSTANT

I I
·1 IOENTIFIER1 ,,

J I I
·1INTEGER1

I l
·,STRING 1

j

:HEX INTEGER I

IDENTIFIER

-----•(LETTER)~---~-L_E_T_T_E_R-------.-•

~

25

INTEGER

C ·@§ J
STRING

---0-----,=---• ~HARACTER)J----,----•~01----• (_____)
HEXINTEGER

-~HEX'b~~f,!MA~ - l ,)

26

INDEX
Subject Page

Addresses of calls. 17

Blockade . 18

Comments 8

Editor Commands 3, 4
P (Print) 3, 11, 17 ·
Pxx 3
p• 3
U (Print previous line) 3
Uxx 3
u· 3
N (Print next line) . 4
Nxx 4
N* 4
D (Delete line). 4, 11
Dxx 4
D* · 4
I (Insert line) . 4
R string (Replace) 4
X (Extend) . 4
S (Status) . 4
Q (Quit) 4, 11

Error Codes 14, 15, 16

Functions (built-in)
ABS 9
CALL · 9
DIV 7
INKEY 9
INP 9
MOD•............ 7
MOVE 9
OUT • 9
PLOT•....................... 9
POINT 9

Subject Page

RET 9
SHL 7
SHA 7
SOR 9

Memory maps . 19

Monitor Commands. 2
E (Edit) . 2, 11
C (Compile) , 2
C/-P · 2
C/-5 2, 12
A (Run) 2
R/-C 2, 12
LS (Load Source). 2, 11, 13
LP (Load object-program) 2, 11
WS (Write source) 2, 11
WP (Write object-program) 2, 11

Operators
": = " Assignment . 5
"= " Equality . 5, 8
";" Statement Separator 5
" = >" Relational. 8

Overview 1

Sample Programs . 20

Statements
BEGIN 5
END 5
IF THEN ELSE 5
READ 7, 8
WRITE 7, 8
WHILE 8
REPEAT•....................... 8

Syntax Diagrams. 23

27

28

RADIO SHACK SOFTWARE LICENSE

The following are the terms and conditions of the Radio Shack Software License for
copies of Radio Shack software either purchased by the customer, or received with
or as part of hardware purchased by customer:

A. Radio Shack grants to CUSTOMER a personal, non-exclusive, paid up license to
use the Radio Shack computer software programs received. Title to the media on
which the software is recorded (cassette and/or disk) or stored (ROM) is transferred
to the CUSTOMER, but not title to the software.

B. In consideration for this license, CUSTOMER shall not reproduce copies of such
software programs except to produce the number of copies required for personal
use by CUSTOMER (if the software allows a backup copy to be made), and to include
Radio Shack's copyright notice on all copies of programs reproduced in whole or
in part.

C. CUSTOMER may resell Radio Shack's system and applications software
(modified or not, in whole or in part), provided CUSTOMER has purchased one copy
of the software for each one resold. The provisions of this Software License
(paragraphs A, B, and C) shall also be applicable to third parties purchasing such
software from CUSTOMER.

IMPORTANT NOTICE

ALL RADIO SHACK COMPUTER PROGRAMS ARE
LICENSED ON AN "AS IS" BASIS WITHOUT
WARRANTY

Radio Shack shall have no liability or responsibility to
customer or any other person or entity with respect to
any liability, loss or damage caused or alleged to be
caused directly or indirectly by computer equipment or
programs sold by Radio Shack, including but not limited
to any interruption of service, loss of business or
anticipatory profits or consequential damages resulting
from the use or operation of such computer or computer
programs.
NOTE: Good data processing procedure dictates that
the user test the program, run and test sample sets of
data, and run the system in parallel with the system
previously in use for a period of time adequate to insure
that results of operation of the computer or program are
satisfactory.

	page01
	page02
	page03
	page04
	page05
	page06
	page07
	page08
	page09
	page10
	page11
	page12
	page13
	page14
	page15
	page16
	page17
	page18
	page19
	page20
	page21
	page22
	page23
	page24
	page25
	page26
	page27
	page28
	page29
	page30

